Supplementary Methods

Testing for pleiotropy using SMR/HEIDI approach

SMR/HEIDI analysis was conducted as described by Zhu et al. HEIDI statistics was calculated as

$$T_{HEIDI} = \sum_{i=1}^{m} z_{d(i)}^2$$
, where m is the number of SNPs selected for analysis, $z_{d(i)} = \frac{d_i}{SE_{(d_i)}}$ and $d_i = \frac{d_i}{SE_{(d_i)}}$

 $\beta_{SMR_i} - \beta_{SMR (lead SNP)}$.

SNP selection was performed as follows:

- 1) We defined a set of eligible markers within ± 250 kb from the lead SNP in the primary GWAS, which had $\chi^2 > 10$ in the primary GWAS, and for which the results were reported in the secondary GWAS;
- 2) Made empty "target" and "rejected" SNP sets;
- 3) Selected SNP from the primary GWAS with the lowest *P*;
- 4) If this SNP had r² > 0.9 with any SNP in the target SNP set, we added it to the "rejected" set. LD matrix (r²) was computed with PLINK 1.9 (https://www.cog-genomics.org/plink2) using 1000 Genomes data for 503 European individuals (http://www.internationalgenome.org/data/);
- 5) Otherwise, it was added to the "target" set;
- 6) Procedure was repeated from the step 3) until either eligible SNP set was exhausted, or the "target" set had 20 SNPs. If we could not select 3 or more SNPs, no test was performed.

GWAS summary statistics for VVs was obtained from the Gene ATLAS database (I83_GA). Analysis was conducted using Python 3.5 as the main programming language.

REFERENCES:

1. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat. Genet.* **48**, 481–7 (2016). doi:10.1038/ng.3538